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1) INTRODUCTION: In-order to make really assistive robots, they should be able to do fine 
manipulation skills. Complex contact forces with environment need a controller that can handle 
forces in meaningful way. Rigid body dynamics can give robot motion parameters. But once robot is 
in touch with the environment than it requires resulting contact interactions. Reinforcement 
learning has been an approach to learn manipulation skills. But those approaches consider position 
that need to be controlled. These are potentially dangerous as no consideration for object position is 
given. In this paper we present a new approach in which we learn the forces and torque to be 
controlled at the end effector combined with kinematic demonstration. An initial knematic 
demonstration is given. But so doesn’t contain information about force and torque. So we do 
reinforcement learning through  trial and error. “The contributions of this paper are two-fold: 
 (1) we demonstrate that learning force control policies enables compliant execution of 
manipulation tasks with increased robustness as opposed to stiff position control, and  
(2) we introduce a policy parameterization that uses finely discretized trajectories coupled with a 
cost function that ensures smoothness during exploration and learning.” 
 

2)POLICY IMROVEMENT WITH PATH INTEGRAL(PI2): Policy improvement with path integral 
optimizes control parameters based on a cost function i.e given a parameterized function and a cost 
function depending on state we need to minimise cost of the path.  

3) LEARNING FORCE FEEDBACK CONTROL: The policy is initialized using user provided kinematic 
demonstration. The PI2  reinforcement learning algorithm is used to optimise policy and to achieve 
right profile of force/torque through trial and error.  Some of the steps involved in improving the 
policy are: 

 Demonstration: Force and torque are set to zero initially as during kinematic demonstration 
they can’t be observed correctly. Robot is maximally compliant i.e. gives easily to the contact 
forces. 

 Cost Function: A automated or user provided cost function must to assigned to improve 
policies. 

 Execution: PI2  reinforcement learning algorithm is model free reinforcement learning 
algorithm so it just optimises control parameters subjected to the cost function treating the 
intermediate controller as black box. 

 Rollout reuse: We preserve some rollouts from previous iteration so that we keep learning 
from those. But it may be case that in actual rollout can’t be generated again. So, in-order to 
overcome this effect we keep re-evaluating such rollouts. 

 



 

4) EXPERIMENT: We tested our approach on two manipulation tasks. Both tasks were performed 
using a 7 degree of freedom(DOF) Barrett WAM arm, equipped with a three-fingered Barrett Hand 
and a 6-DOF force-torque sensor at the wrist. Our control law for 7 DOF arm is as following and as 
given in fig 4. 

Tarm = Tinv.dyn +Tjoint + Tforce 

 

 

 

 

 

 



 
 

 Opening a Door: The aim of the experiment is to learn a control policy for successfully 
operating a lever door handle and open the door. The trajectory was 10 second long and 
descritized into 100 steps. The cost function used was The immediate cost function at time t 
is:  
rt = 300qdoor + 100qhandle +100qpos +10qorient +0:1qfmag +0:02qtmag +0:02qttrack + 0:01qftrack + 
0:0001XTRX 
where qdoor and qhandle are the squared tracking errors of the door and handle angles 
respectively, qpos and qorient are the squared tracking errors of the position and orientation of 
the hand, qfmag and qtmag are the squared magnitudes of the desired forces and torques, qftrack 
and qttrack are the squared force and torque tracking errors, and XTRX is the control cost. 
After 110 trial we achieved policy that achieved 100% success. 

Grasping a pen: The task is to pick a pen kept on table. More tougher as pen might slip from hand. 
The immediate cost function at time t is: 
 rt = 100qpen+1:0qftrack+0:5qfingertrack+0:1qfmag+ 0:0001XTRX, 
 where qpen is an indicator cost which is 1 if the pen has slipped out of the hand (as described above), 
qftrack is the squared force tracking error, qfingertrack is the squared finger position tracking error, qfmag is 
the squared force magnitude, and XTRX is the control cost 
After 90 trials we achieved policy with 100% success. Although uncertainty in orientation was not 
taken to consideration but it could handle some error in orientation as well. 
 
(All figure are taken from the paper.) 


