
LEARNING FORCE CONTROL POLICIES FOR COMPLIANT

MANIPULATION

By: Nikhil Aggarwal

1) INTRODUCTION: In-order to make really assistive robots, they should be able to do fine
manipulation skills. Complex contact forces with environment need a controller that can handle
forces in meaningful way. Rigid body dynamics can give robot motion parameters. But once robot is
in touch with the environment than it requires resulting contact interactions. Reinforcement
learning has been an approach to learn manipulation skills. But those approaches consider position
that need to be controlled. These are potentially dangerous as no consideration for object position is
given. In this paper we present a new approach in which we learn the forces and torque to be
controlled at the end effector combined with kinematic demonstration. An initial knematic
demonstration is given. But so doesn’t contain information about force and torque. So we do
reinforcement learning through trial and error. “The contributions of this paper are two-fold:
 (1) we demonstrate that learning force control policies enables compliant execution of
manipulation tasks with increased robustness as opposed to stiff position control, and
(2) we introduce a policy parameterization that uses finely discretized trajectories coupled with a
cost function that ensures smoothness during exploration and learning.”

2)POLICY IMROVEMENT WITH PATH INTEGRAL(PI2): Policy improvement with path integral
optimizes control parameters based on a cost function i.e given a parameterized function and a cost
function depending on state we need to minimise cost of the path.

3) LEARNING FORCE FEEDBACK CONTROL: The policy is initialized using user provided kinematic
demonstration. The PI2 reinforcement learning algorithm is used to optimise policy and to achieve
right profile of force/torque through trial and error. Some of the steps involved in improving the
policy are:

 Demonstration: Force and torque are set to zero initially as during kinematic demonstration
they can’t be observed correctly. Robot is maximally compliant i.e. gives easily to the contact
forces.

 Cost Function: A automated or user provided cost function must to assigned to improve
policies.

 Execution: PI2 reinforcement learning algorithm is model free reinforcement learning
algorithm so it just optimises control parameters subjected to the cost function treating the
intermediate controller as black box.

 Rollout reuse: We preserve some rollouts from previous iteration so that we keep learning
from those. But it may be case that in actual rollout can’t be generated again. So, in-order to
overcome this effect we keep re-evaluating such rollouts.

4) EXPERIMENT: We tested our approach on two manipulation tasks. Both tasks were performed
using a 7 degree of freedom(DOF) Barrett WAM arm, equipped with a three-fingered Barrett Hand
and a 6-DOF force-torque sensor at the wrist. Our control law for 7 DOF arm is as following and as
given in fig 4.

Tarm = Tinv.dyn +Tjoint + Tforce

 Opening a Door: The aim of the experiment is to learn a control policy for successfully
operating a lever door handle and open the door. The trajectory was 10 second long and
descritized into 100 steps. The cost function used was The immediate cost function at time t
is:
rt = 300qdoor + 100qhandle +100qpos +10qorient +0:1qfmag +0:02qtmag +0:02qttrack + 0:01qftrack +
0:0001XTRX
where qdoor and qhandle are the squared tracking errors of the door and handle angles
respectively, qpos and qorient are the squared tracking errors of the position and orientation of
the hand, qfmag and qtmag are the squared magnitudes of the desired forces and torques, qftrack
and qttrack are the squared force and torque tracking errors, and XTRX is the control cost.
After 110 trial we achieved policy that achieved 100% success.

Grasping a pen: The task is to pick a pen kept on table. More tougher as pen might slip from hand.
The immediate cost function at time t is:
 rt = 100qpen+1:0qftrack+0:5qfingertrack+0:1qfmag+ 0:0001XTRX,
 where qpen is an indicator cost which is 1 if the pen has slipped out of the hand (as described above),
qftrack is the squared force tracking error, qfingertrack is the squared finger position tracking error, qfmag is
the squared force magnitude, and XTRX is the control cost
After 90 trials we achieved policy with 100% success. Although uncertainty in orientation was not
taken to consideration but it could handle some error in orientation as well.

(All figure are taken from the paper.)

